Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug;18(11):1291-3.
doi: 10.1096/fj.04-1723fje. Epub 2004 Jun 18.

Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema

Affiliations

Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema

Marios C Papadopoulos et al. FASEB J. 2004 Aug.

Abstract

Aquaporin-4 (AQP4) is the major water channel in the brain, expressed predominantly in astroglial cell membranes. Initial studies in AQP4-deficient mice showed reduced cellular brain edema following water intoxication and ischemic stroke. We hypothesized that AQP4 deletion would have the opposite effect (increased brain swelling) in vasogenic (noncellular) edema because of impaired removal of excess brain water through glial limitans and ependymal barriers. In support of this hypothesis, we found higher intracranial pressure (ICP, 52+/-6 vs. 26+/-3 cm H2O) and brain water content (81.2+/-0.1 vs. 80.4+/-0.1%) in AQP4-deficient mice after continuous intraparenchymal fluid infusion. In a freeze-injury model of vasogenic brain edema, AQP4-deficient mice had remarkably worse clinical outcome, higher ICP (22+/-4 vs. 9+/-1 cm H2O), and greater brain water content (80.9+/-0.1 vs. 79.4+/-0.1%). In a brain tumor edema model involving stereotactic implantation of melanoma cells, tumor growth was comparable in wild-type and AQP4-deficient mice. However, AQP4-deficient mice had higher ICP (39+/-4 vs. 19+/-5 cm H2O at seven days postimplantation) and corresponding accelerated neurological deterioration. Thus, AQP4-mediated transcellular water movement is crucial for fluid clearance in vasogenic brain edema, suggesting AQP4 activation and/or up-regulation as a novel therapeutic option in vasogenic brain edema.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources