Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes
- PMID: 15208399
- PMCID: PMC514152
- DOI: 10.1105/tpc.021345
Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes
Abstract
It is often anticipated that many of today's diploid plant species are in fact paleopolyploids. Given that an ancient large-scale duplication will result in an excess of relatively old duplicated genes with similar ages, we analyzed the timing of duplication of pairs of paralogous genes in 14 model plant species. Using EST contigs (unigenes), we identified pairs of paralogous genes in each species and used the level of synonymous nucleotide substitution to estimate the relative ages of gene duplication. For nine of the investigated species (wheat [Triticum aestivum], maize [Zea mays], tetraploid cotton [Gossypium hirsutum], diploid cotton [G. arboretum], tomato [Lycopersicon esculentum], potato [Solanum tuberosum], soybean [Glycine max], barrel medic [Medicago truncatula], and Arabidopsis thaliana), the age distributions of duplicated genes contain peaks corresponding to short evolutionary periods during which large numbers of duplicated genes were accumulated. Large-scale duplications (polyploidy or aneuploidy) are strongly suspected to be the cause of these temporal peaks of gene duplication. However, the unusual age profile of tandem gene duplications in Arabidopsis indicates that other scenarios, such as variation in the rate at which duplicated genes are deleted, must also be considered.
Figures




Comment in
-
Two genomes are better than one: widespread paleopolyploidy in plants and evolutionary effects.Plant Cell. 2004 Jul;16(7):1647-9. doi: 10.1105/tpc.160710. Plant Cell. 2004. PMID: 15272471 Free PMC article. Review. No abstract available.
Similar articles
-
Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families.Syst Biol. 2005 Jun;54(3):441-54. doi: 10.1080/10635150590945359. Syst Biol. 2005. PMID: 16012110
-
Dating and functional characterization of duplicated genes in the apple (Malus domestica Borkh.) by analyzing EST data.BMC Plant Biol. 2010 May 14;10:87. doi: 10.1186/1471-2229-10-87. BMC Plant Biol. 2010. PMID: 20470375 Free PMC article.
-
Evolution of Gene Duplication in Plants.Plant Physiol. 2016 Aug;171(4):2294-316. doi: 10.1104/pp.16.00523. Epub 2016 Jun 10. Plant Physiol. 2016. PMID: 27288366 Free PMC article. Review.
-
Two evolutionarily distinct classes of paleopolyploidy.Mol Biol Evol. 2014 Feb;31(2):448-54. doi: 10.1093/molbev/mst230. Epub 2013 Dec 1. Mol Biol Evol. 2014. PMID: 24296661
-
Gene duplication as a driver of plant morphogenetic evolution.Curr Opin Plant Biol. 2014 Feb;17:43-8. doi: 10.1016/j.pbi.2013.11.002. Epub 2013 Nov 28. Curr Opin Plant Biol. 2014. PMID: 24507493 Review.
Cited by
-
Expression and functional divergence of a type-A response regulator paralog pair formed by dispersed duplication during Populus deltoides evolution.Commun Biol. 2024 Oct 22;7(1):1367. doi: 10.1038/s42003-024-07091-8. Commun Biol. 2024. PMID: 39438601 Free PMC article.
-
Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers.PLoS One. 2012;7(12):e52443. doi: 10.1371/journal.pone.0052443. Epub 2012 Dec 27. PLoS One. 2012. PMID: 23300670 Free PMC article.
-
Delineating the Tnt1 Insertion Landscape of the Model Legume Medicago truncatula cv. R108 at the Hi-C Resolution Using a Chromosome-Length Genome Assembly.Int J Mol Sci. 2021 Apr 21;22(9):4326. doi: 10.3390/ijms22094326. Int J Mol Sci. 2021. PMID: 33919286 Free PMC article.
-
Dynamics and adaptive benefits of protein domain emergence and arrangements during plant genome evolution.Genome Biol Evol. 2012;4(3):316-29. doi: 10.1093/gbe/evs004. Epub 2012 Jan 16. Genome Biol Evol. 2012. PMID: 22250127 Free PMC article.
-
Locally duplicated ohnologs evolve faster than nonlocally duplicated ohnologs in Arabidopsis and rice.Genome Biol Evol. 2013;5(2):362-9. doi: 10.1093/gbe/evt016. Genome Biol Evol. 2013. PMID: 23362157 Free PMC article.
References
-
- Adams, M.D., et al. (1991). Complementary DNA sequencing: Expressed sequence tags and human genome project. Science 252, 1651–1656. - PubMed
-
- Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815. - PubMed
-
- Aoki, N., Whitfeld, P., Hoeren, F., Scofield, G., Newell, K., Patrick, J., Offler, C., Clarke, B., Rahman, S., and Furbank, R.T. (2002). Three sucrose transporter genes are expressed in the developing grain of hexaploid wheat. Plant Mol. Biol. 50, 453–462. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials