Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus
- PMID: 15208632
- DOI: 10.1038/nn1272
Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus
Abstract
In the dorsal cochlear nucleus, long-term synaptic plasticity can be induced at the parallel fiber inputs that synapse onto both fusiform principal neurons and cartwheel feedforward inhibitory interneurons. Here we report that in mouse fusiform cells, spikes evoked 5 ms after parallel-fiber excitatory postsynaptic potentials (EPSPs) led to long-term potentiation (LTP), whereas spikes evoked 5 ms before EPSPs led to long-term depression (LTD) of the synapse. The EPSP-spike protocol led to LTD in cartwheel cells, but no synaptic changes resulted from the reverse sequence (spike-EPSP). Plasticity in fusiform and cartwheel cells therefore followed Hebbian and anti-Hebbian learning rules, respectively. Similarly, spikes generated by summing EPSPs from different groups of parallel fibers produced LTP in fusiform cells, and LTD in cartwheel cells. LTD could also be induced in glutamatergic inputs of cartwheel cells by pairing parallel-fiber EPSPs with depolarizing glycinergic PSPs from neighboring cartwheel cells. Thus, synaptic learning rules vary with the postsynaptic cell, and may require the interaction of different transmitter systems.
Comment in
-
Hebb and anti-Hebb meet in the brainstem.Nat Neurosci. 2004 Jul;7(7):687-8. doi: 10.1038/nn0704-687. Nat Neurosci. 2004. PMID: 15220924 No abstract available.
Similar articles
-
Context-dependent synaptic action of glycinergic and GABAergic inputs in the dorsal cochlear nucleus.J Neurosci. 1996 Apr 1;16(7):2208-19. doi: 10.1523/JNEUROSCI.16-07-02208.1996. J Neurosci. 1996. PMID: 8601801 Free PMC article.
-
Synaptic physiology in the cochlear nucleus angularis of the chick.J Neurophysiol. 2005 May;93(5):2520-9. doi: 10.1152/jn.00898.2004. Epub 2004 Dec 22. J Neurophysiol. 2005. PMID: 15615833
-
Synaptic inputs to stellate cells in the ventral cochlear nucleus.J Neurophysiol. 1998 Jan;79(1):51-63. doi: 10.1152/jn.1998.79.1.51. J Neurophysiol. 1998. PMID: 9425176
-
Distinct functional and anatomical architecture of the endocannabinoid system in the auditory brainstem.J Neurophysiol. 2009 May;101(5):2434-46. doi: 10.1152/jn.00047.2009. Epub 2009 Mar 11. J Neurophysiol. 2009. PMID: 19279154 Free PMC article.
-
Natural patterns of activity and long-term synaptic plasticity.Curr Opin Neurobiol. 2000 Apr;10(2):172-9. doi: 10.1016/s0959-4388(00)00076-3. Curr Opin Neurobiol. 2000. PMID: 10753798 Free PMC article. Review.
Cited by
-
Adaptation to stimulus statistics in the perception and neural representation of auditory space.Neuron. 2010 Jun 24;66(6):937-48. doi: 10.1016/j.neuron.2010.05.018. Neuron. 2010. PMID: 20620878 Free PMC article.
-
Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity.J Neurosci. 2008 Mar 26;28(13):3310-23. doi: 10.1523/JNEUROSCI.0303-08.2008. J Neurosci. 2008. PMID: 18367598 Free PMC article.
-
Suppression and facilitation of auditory neurons through coordinated acoustic and midbrain stimulation: investigating a deep brain stimulator for tinnitus.J Neural Eng. 2014 Dec;11(6):066001. doi: 10.1088/1741-2560/11/6/066001. Epub 2014 Oct 13. J Neural Eng. 2014. PMID: 25307351 Free PMC article.
-
The Contribution of Brainstem and Cerebellar Pathways to Auditory Recognition.Front Psychol. 2017 Mar 20;8:265. doi: 10.3389/fpsyg.2017.00265. eCollection 2017. Front Psychol. 2017. PMID: 28373850 Free PMC article. Review.
-
Neural mechanisms underlying somatic tinnitus.Prog Brain Res. 2007;166:107-23. doi: 10.1016/S0079-6123(07)66010-5. Prog Brain Res. 2007. PMID: 17956776 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources