Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug;32(4):223-33.
doi: 10.1016/j.bioorg.2004.04.004.

Evidence for the 2:1 molecular recognition and inclusion behaviour between beta- and gamma-cyclodextrins and cinchonine

Affiliations

Evidence for the 2:1 molecular recognition and inclusion behaviour between beta- and gamma-cyclodextrins and cinchonine

Xianhong Wen et al. Bioorg Chem. 2004 Aug.

Abstract

Cinchonine (Cin) is the primary drug of choice in the treatment of malaria, but its poor solubility has restricted its use via the oral route. Cyclodextrins (CDs) form inclusion complexes with cinchonine to form soluble complexes. This interaction was investigated by solubility studies, electrospray ionization mass spectrometry (ESI-MS), and molecular modeling. ESI-MS evaluated successfully the nature of the solution-phase inclusion complexes. The experimental results showed that not only 1:1, but also stable 2:1 inclusion complexes can be formed between CDs and Cin. Multi-component complexes of beta-CD-Cin-beta-CD (1:1:1), gamma-CD-Cin-gamma-CD (1:1:1), and beta-CD-Cin-gamma-CD (1:1:1) were found in equimolar beta- and gamma-CD mixtures with Cin. The formation of 2:1 and multi-component 1:1:1 non-covalent CD-Cin complexes indicates that beta- and gamma-CD are able to form sandwich-type inclusion complexes with Cin in high concentrations. The phase-solubility diagram showed non-linear type A(p) profile, indicating that more than one cyclodextrin molecule is involved in the complexation of one guest molecule. Molecular modeling calculations have been carried out to rationalize the experimental findings and predict the lowest energy molecular structure of inclusion complex.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources