Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug 27;279(35):36454-61.
doi: 10.1074/jbc.M404983200. Epub 2004 Jun 21.

NADPH oxidase-dependent acid production in airway epithelial cells

Affiliations
Free article

NADPH oxidase-dependent acid production in airway epithelial cells

Christian Schwarzer et al. J Biol Chem. .
Free article

Abstract

The purpose of this study was to determine the role of NADPH oxidase in H(+) secretion by airway epithelia. In whole cell patch clamp recordings primary human tracheal epithelial cells (hTE) and the human serous gland cell line Calu-3 expressed a functionally similar zinc-blockable plasma membrane H(+) conductance. However, the rate of H(+) secretion of confluent epithelial monolayers measured in Ussing chambers was 9-fold larger in hTE compared with Calu-3. In hTE H(+) secretion was blocked by mucosal ZnCl(2) and the NADPH oxidase blockers acetovanillone and 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), whereas these same blockers had no effect in Calu-3. We determined levels of transcripts for the NADPH oxidase transmembrane isoforms (Nox1 through -5, Duox1 and -2, and p22(phox)) and found Duox1, -2, and p22(phox) to be highly expressed in hTE, as well as the intracellular subunits p40(phox), p47(phox), and p67(phox). In contrast, Calu-3 lacked transcripts for Duox1, p40(phox), and p47(phox). Anti-Duox antibody staining resulted in prominent apical staining in hTE but no significant staining in Calu-3. When treated with amiloride to block the Na(+)/H(+) exchanger, intracellular pH in hTE acidified at significantly higher rates than in Calu-3, and treatment with AEBSF blocked acidification. These data suggest a role for an apically located Duox-based NADPH oxidase during intracellular H(+) production and H(+) secretion, but not in H(+) conduction.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources