Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar 29;359(1443):331-43.
doi: 10.1098/rstb.2003.1428.

Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation

Affiliations

Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation

Wolfgang Cramer et al. Philos Trans R Soc Lond B Biol Sci. .

Abstract

The remaining carbon stocks in wet tropical forests are currently at risk because of anthropogenic deforestation, but also because of the possibility of release driven by climate change. To identify the relative roles of CO2 increase, changing temperature and rainfall, and deforestation in the future, and the magnitude of their impact on atmospheric CO2 concentrations, we have applied a dynamic global vegetation model, using multiple scenarios of tropical deforestation (extrapolated from two estimates of current rates) and multiple scenarios of changing climate (derived from four independent offline general circulation model simulations). Results show that deforestation will probably produce large losses of carbon, despite the uncertainty about the deforestation rates. Some climate models produce additional large fluxes due to increased drought stress caused by rising temperature and decreasing rainfall. One climate model, however, produces an additional carbon sink. Taken together, our estimates of additional carbon emissions during the twenty-first century, for all climate and deforestation scenarios, range from 101 to 367 Gt C, resulting in CO2 concentration increases above background values between 29 and 129 p.p.m. An evaluation of the method indicates that better estimates of tropical carbon sources and sinks require improved assessments of current and future deforestation, and more consistent precipitation scenarios from climate models. Notwithstanding the uncertainties, continued tropical deforestation will most certainly play a very large role in the build-up of future greenhouse gas concentrations.

PubMed Disclaimer

References

    1. Trends Ecol Evol. 2000 Aug;15(8):332-337 - PubMed
    1. Science. 2002 May 31;296(5573):1687-9 - PubMed
    1. Science. 2002 Aug 9;297(5583):999-1002 - PubMed
    1. Science. 1998 Oct 16;282(5388):439-42 - PubMed
    1. Nature. 2002 Apr 11;416(6881):617-20 - PubMed

LinkOut - more resources