Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov;92(5):3085-96.
doi: 10.1152/jn.00349.2004. Epub 2004 Jun 22.

Regulation of main olfactory bulb mitral cell excitability by metabotropic glutamate receptor mGluR1

Affiliations
Free article

Regulation of main olfactory bulb mitral cell excitability by metabotropic glutamate receptor mGluR1

Thomas Heinbockel et al. J Neurophysiol. 2004 Nov.
Free article

Abstract

In the rodent main olfactory bulb (MOB), mitral cells (MCs) express high levels of the group I metabotropic glutamate receptor (mGluR) subtype, mGluR1. The significance of this receptor in modulating MC excitability is unknown. We investigated the physiological role of mGluR1 in regulating MC activity in rat and mouse MOB slices. The selective group I agonist (RS)-3,5-dihydroxyphenylglycine (DHPG), but not group II or III agonists, induced potent, dose-dependent, and reversible depolarization and increased firing of MCs. These effects persisted in the presence of blockers of fast synaptic transmission, indicating that they are due to direct activation of mGluRs on MCs. Voltage-clamp recordings showed that DHPG elicited a voltage-dependent inward current consisting of multiple components sensitive to potassium and calcium channel blockade and intracellular calcium chelation. MC excitatory responses to DHPG were absent in mGluR1 knockout mice but persisted in mGluR5 knockout mice. Broad-spectrum LY341495, MCPG, as well as preferential mGluR1 LY367385 antagonists blocked the excitatory effects of DHPG and also potently modulated MC spontaneous and olfactory nerve-evoked excitability. mGluR antagonists altered spontaneous membrane potential bistability, increasing the duration of the up and down states. mGluR antagonists also substantially attenuated MC responses to sensory input, decreasing the probability and increasing the latency of olfactory nerve-evoked spikes. These findings suggest that endogenous glutamate tonically modulates MC excitability and responsiveness to olfactory nerve input, and hence the operation of the MOB circuitry, via activation of mGluR1.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources