Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jul-Aug;20(7-8):669-77.
doi: 10.1016/j.nut.2004.04.017.

Carbohydrate intake during exercise and performance

Affiliations
Review

Carbohydrate intake during exercise and performance

Asker E Jeukendrup. Nutrition. 2004 Jul-Aug.

Abstract

It is generally accepted that carbohydrate (CHO) feeding during exercise can improve endurance capacity (time to exhaustion) and exercise performance during prolonged exercise (>2 h). More recently, studies have also shown ergogenic effects of CHO feeding during shorter exercise of high intensity ( approximately 1 h at >75% of maximum oxygen consumption). During prolonged exercise the mechanism behind this performance improvement is likely to be related to maintenance of high rates of CHO oxidation and the prevention of hypoglycemia. Nevertheless, other mechanisms may play a role, depending on the type of exercise and the specific conditions. The mechanism for performance improvements during higher-intensity exercise is less clear, but there is some evidence that CHO can have central effects. In the past few years, studies have investigated ways to optimize CHO delivery and bioavailability. An analysis of all studies available shows that a single CHO ingested during exercise will be oxidized at rates up to about 1 g/min, even when large amounts of CHO are ingested. Combinations of CHO that use different intestinal transporters for absorption (e.g., glucose and fructose) have been shown to result in higher oxidation rates, and this seems to be a way to increase exogenous CHO oxidation rates by 20% to 50%. The search will continue for ways to further improve CHO delivery and to improve the oxidation efficiency resulting in less accumulation of CHO in the gastrointestinal tract and potentially decreasing gastrointestinal problems during prolonged exercise.

PubMed Disclaimer

MeSH terms

Substances