Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;25(8):1033-43.
doi: 10.1016/j.neurobiolaging.2003.11.006.

Binding of cystatin C to Alzheimer's amyloid beta inhibits in vitro amyloid fibril formation

Affiliations

Binding of cystatin C to Alzheimer's amyloid beta inhibits in vitro amyloid fibril formation

Magdalena Sastre et al. Neurobiol Aging. 2004 Sep.

Abstract

The colocalization of cystatin C, an inhibitor of cysteine proteases, with amyloid beta (Abeta) in parenchymal and vascular amyloid deposits in brains of Alzheimer's disease (AD) patients may reflect cystatin C involvement in amyloidogenesis. We therefore sought to determine the association of cystatin C with Abeta. Immunofluorescence analysis of transfected cultured cells demonstrated colocalization of cystatin C and beta amyloid precursor protein (betaAPP) intracellularly and on the cell surface. Western blot analysis of immunoprecipitated cell lysate or medium proteins revealed binding of cystatin C to full-length betaAPP and to secreted betaAPP (sbetaAPP). Deletion mutants of betaAPP localized the cystatin C binding site within betaAPP to the Abeta region. Cystatin C association with betaAPP resulted in increased sbetaAPP but did not affect levels of secreted Abeta. Analysis of the association of cystatin C and Abeta demonstrated a specific, saturable and high affinity binding between cystatin C and both Abeta(1-42) and Abeta(1-40). Notably, cystatin C association with Abeta results in a concentration-dependent inhibition of Abeta fibril formation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources