Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 16;1014(1-2):197-208.
doi: 10.1016/j.brainres.2004.04.029.

Differential modulation of nociceptive neural responses in medial and lateral pain pathways by peripheral electrical stimulation: a multichannel recording study

Affiliations

Differential modulation of nociceptive neural responses in medial and lateral pain pathways by peripheral electrical stimulation: a multichannel recording study

Jin-Yan Wang et al. Brain Res. .

Abstract

It is well accepted that peripheral electrical stimulation (PES) can produce an analgesic effect in patients with acute and chronic pain. However, the neural basis underlying stimulation-induced analgesia remains unclear. In the present study, we examined the pain-related neural activity modified by peripheral stimulation in rats. The stimulation frequency of pulses applied to needle electrodes in the hindlimb was 2 Hz alternating with 100 Hz, with 0.6 ms pulse width for 2 Hz and 0.2 ms for 100 Hz. The intensity of the stimulation was increased stepwise from 1 to 3 mA with each 1-mA step lasting for 10 min. The nociceptive neural and behavioral responses were examined immediately after the termination of stimulation. Using a multiple-channel recording technique, we simultaneously recorded the activity of many single neurons located in the primary somatosensory and anterior cingulate cortex (ACC), as well as the ventral posterior and medial dorsal thalamus in behaving rats. Our results showed that peripheral electrical stimulation significantly reduced the nociceptive responses in ventroposterior thalamus and somatosensory cortex, indicating an inhibition of nociceptive processing. In contrast, the analgesic stimulation produced a significant increase in mediodorsal thalamus while a less significant decrease in cingulate cortex, reflecting a complicated effect associated with combined antinociceptive activation and nociceptive suppression. These results support the idea that peripheral electrical stimulation can ultimately alter the pain perception by specifically inhibiting the nociceptive transmission in the sensory pathway while mobilizing the antinociceptive action in the affective pathway, thus to produce pain relief.

PubMed Disclaimer

Publication types

LinkOut - more resources