Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun 21;10(12):2873-84.
doi: 10.1002/chem.200305707.

Combinatorial chemistry approach to chiral catalyst engineering and screening: rational design and serendipity

Affiliations

Combinatorial chemistry approach to chiral catalyst engineering and screening: rational design and serendipity

Kuiling Ding et al. Chemistry. .

Abstract

An efficient asymmetric catalyst relies on the successful combination of a large number of interrelated variables, including rational design, intuition, persistence, and good fortune-not all of which are necessarily well-understood; this renders such practice largely empirical. As a result, the possibility of using combinatorial chemistry methods in asymmetric catalysis research has been widely recognized to be highly desirable. In this account, we attempt to show the principle and application of combinatorial approach in the discovery of chiral catalysts for enantioselective reactions. The concept focuses on the strategy for the creation of a modular chiral catalyst library by two-component ligand modification of metal ions on the basis of molecular recognition and assembly. The self-assembled chiral catalyst with two different ligands indeed exhibited synergistic effects in terms of both enantioselectivity and activity in comparison with its corresponding homocombinations in many reactions. The examples described in this paper demonstrated the powerfulness of combinatorial approach for the discovery of novel chiral catalyst systems, particularly for the development of highly efficient, enantioselective, and practical catalysts for enantioselective reactions. We hope this concept will stimulate further work on the discovery of more highly efficient and enantioselective catalysts, as well as unexpected classes of catalysts or catalytic enantioselective reactions in the future with the help of a combinatorial chemistry approach.

PubMed Disclaimer

Publication types

LinkOut - more resources