Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul;98(7):1183-93.
doi: 10.1016/j.jinorgbio.2004.01.015.

How do aldehyde side products occur during alkene epoxidation by cytochrome P450? Theory reveals a state-specific multi-state scenario where the high-spin component leads to all side products

Affiliations

How do aldehyde side products occur during alkene epoxidation by cytochrome P450? Theory reveals a state-specific multi-state scenario where the high-spin component leads to all side products

Sam P de Visser et al. J Inorg Biochem. 2004 Jul.

Abstract

A theoretical study of alkene epoxidation, by the high-valent iron-oxo species (Compound I) of cytochrome P450, reveals a multi-state scenario in which the different products are generated in a state specific manner. All the low-spin doublet state processes are effectively concerted epoxide producing pathways. By contrast, all the high-spin quartet processes are stepwise and either lead to epoxide that does not conserve the isomeric identity of the alkene (cis or trans), or/and to by-products such as suicidal complexes and aldehydes. The product/state inventory is the following: (a) The epoxide with conserved alkene stereochemistry is generated from the low-spin doublet states of Compound I in a nonsynchronous but effectively concerted pathways that involve carbon radical (with Fe(III) and Fe(IV)) and cationic intermediates. (b) The epoxide with scrambled alkene stereochemistry is obtained from the quartet high-spin radical intermediate (with Fe(IV)). (c) The suicidal complex, with a C-N bond between the alkene and the porphyrin, is obtained from the high-spin cationic state that possesses one electron in the sigma xy* orbital (the antibonding Fe-N orbital made from dxy and nitrogen sigma-hybrids). (d) The aldehyde by-product is obtained from the high-spin cationic state that possesses one electron in the sigma xy* orbital (the antibonding O-Fe-S orbital made from dz2 and the oxo and sulfur sigma-hybrids). Factors controlling the competition between these processes are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources