Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2004 Jul;53(7):1643-8.
doi: 10.2337/diabetes.53.7.1643.

Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction

Affiliations
Clinical Trial

Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction

Mark A Febbraio et al. Diabetes. 2004 Jul.

Abstract

The mechanisms that mediate the tightly controlled production and clearance of glucose during muscular work are unclear, and it has been suggested that an unidentified "work factor" exists that influences the contraction-induced increase in endogenous glucose production (EGP). The cytokine interleukin (IL)-6 is released from skeletal muscle during contraction. Here we show that IL-6 contributes to the contraction-induced increase in EGP. Six men performed 2 h of bicycle exercise on three separate occasions, at a relatively high intensity (HI) or at a low intensity with (LO + IL-6) or without (LO) an infusion of recombinant human IL-6 that matched the circulating concentration of IL-6 seen in HI exercise. The stable isotope 6,6 (2)H(2) glucose was infused to calculate EGP (rate of glucose appearance [R(a)]), whole-body glucose disposal (rate of glucose disappearance [R(d)]), and metabolic clearance rate (MCR) of glucose. Glucose R(a), R(d), and MCR were higher (P < 0.05) at HI than at LO. Throughout exercise at LO + IL-6, glucose R(a) and R(d) were higher (P < 0.05) than LO, even though the exercise intensity was identical. In addition, MCR was higher (P < 0.05) at LO + IL-6 than at LO at 90 min. Insulin, glucagon, epinephrine, norepinephrine, cortisol, and growth hormone were identical when comparing LO + IL-6 with LO. These data suggest that IL-6 influences glucose homeostasis during exercise. Our results provide potential new insights into factors that mediate glucose production and disposal and implicates IL-6 in the so-called "work factor."

PubMed Disclaimer

Publication types