Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep 9;23(41):6914-23.
doi: 10.1038/sj.onc.1207885.

Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1)

Affiliations

Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1)

Akiyoshi Komuro et al. Oncogene. .

Abstract

Smad7 negatively regulates transforming growth factor (TGF)-beta superfamily signaling by binding to activated type I receptors, thereby preventing the phosphorylation of receptor-regulated Smads (R-Smads), as well as by recruiting HECT-type E3 ubiquitin ligases to degrade type I receptors through a ubiquitin-dependent mechanism. To elucidate the regulatory mechanisms of TGF-beta signaling, we searched for novel members of proteins that interact with Smad7 using a yeast two-hybrid system. One of the proteins identified was the WW domain-containing protein 1 (WWP1) that is structurally related to Smad ubiquitin regulatory factors (Smurfs), E3 ubiquitin ligases for Smads and TGF-beta superfamily receptors. Using a TGF-beta-responsive reporter in mammalian cells, we found that WWP1 inhibited transcriptional activities induced by TGF-beta. Similar to Smurfs, WWP1 associated with Smad7 and induced its nuclear export, and enhanced binding of Smad7 to TGF-beta type I receptor to cause ubiquitination and degradation of the receptor. Consistent with these results, WWP1 inhibited phosphorylation of Smad2 induced by TGF-beta. WWP1 thus negatively regulates TGF-beta signaling in cooperation with Smad7. However, unlike Smurfs, WWP1 failed to ubiquitinate R-Smads and SnoN. Importantly, WWP1 and Smurfs were expressed in distinct patterns in human tissues and carcinoma cell lines, suggesting unique pathophysiological roles of WWP1 and Smurfs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources