Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2004 Apr;52(3):177-84.
doi: 10.1136/jim-52-03-32.

Effects of atorvastatin and simvastatin on low-density lipoprotein subfraction profile, low-density lipoprotein oxidizability, and antibodies to oxidized low-density lipoprotein in relation to carotid intima media thickness in familial hypercholesterolemia

Affiliations
Clinical Trial

Effects of atorvastatin and simvastatin on low-density lipoprotein subfraction profile, low-density lipoprotein oxidizability, and antibodies to oxidized low-density lipoprotein in relation to carotid intima media thickness in familial hypercholesterolemia

Lambertus J H van Tits et al. J Investig Med. 2004 Apr.

Abstract

Background: Little is known about the effects of statins on the quality of circulating low-density lipoprotein (LDL) in relation to atherosclerosis progression.

Methods: In a double-blind, randomized trial of 325 patients with familial hypercholesterolemia (FH), we assessed the effects of high-dose atorvastatin (80 mg) and conventional-dose simvastatin (40 mg) on LDL subfraction profile (n = 289), LDL oxidizability (n = 121), and circulating autoantibodies to oxidized LDL (n = 220). Progression of atherosclerosis was measured by carotid intima media thickness (IMT) (n = 325).

Results: At baseline, the patients showed an intermediate LDL subfraction profile composed of three LDL subfractions (LDL1, LDL2, LDL3), with LDL2 as the predominant subfraction. A strong negative correlation was found between plasma triglycerides and the LDL subfraction profile (r = -.64, p = .000). Both plasma levels of triglycerides and small dense LDL3 correlated weakly with baseline IMT (r = .11, p = .04 and r = .15, p = .01, respectively; n = 289). No association was found between baseline IMT and oxidation parameters or circulating antibodies to oxidized LDL. Atorvastatin reduced triglycerides, LDL cholesterol, and all LDL subfractions to a greater extent than did simvastatin and led to regression of carotid IMT. However, LDL subfraction pattern and plasma levels of autoantibodies to oxidized LDL remained unchanged in both treatment groups, and LDL oxidizability increased minimally to a similar extent in both groups. Significant treatment differences were found for the rate of in vitro oxidation of LDL and the amount of dienes formed during in vitro oxidation of LDL, which both decreased more following atorvastatin than after simvastatin.

Conclusion: Change of IMT after statin treatment was associated with baseline IMT (r = .41), LDL cholesterol (r = -.20), and the amount of dienes formed during in vitro oxidation of LOL (r = .28) but not with plasma levels of antibodies to oxidized LDL, in vitro LDL oxidizability, and LDL subfraction profile.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources