Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr;36(2):171-8.
doi: 10.1023/b:jobb.0000023620.42653.b7.

Formation of palmitic acid/Ca2+ complexes in the mitochondrial membrane: a possible role in the cyclosporin-insensitive permeability transition

Affiliations

Formation of palmitic acid/Ca2+ complexes in the mitochondrial membrane: a possible role in the cyclosporin-insensitive permeability transition

Galina D Mironova et al. J Bioenerg Biomembr. 2004 Apr.

Abstract

A possible role of palmitic acid/Ca2+ (PA/Ca2+) complexes in the cyclosporin-insensitive permeability transition in mitochondria has been studied. It has been shown that in the presence of Ca2+, PA induces a swelling of mitochondria, which is not inhibited by cyclosporin A. The swelling is accompanied by a drop in membrane potential, which cannot be explained only by a work of the Ca2+ uniporter. With time, the potential is restored. Evidence has been obtained indicating that the specific content of mitochondrial lipids would favor the PA/Ca2+ -induced permeabilization of the membrane. In experiments with liposomes, the PA/Ca2+ -induced membrane permeabilization was larger for liposomes formed from the mitochondrial lipids, as compared to the azolectin liposomes. Additionally, it has been found that in mitochondria of the TNF (tumor necrosis factor)-sensitive cells (WEHI-164 line), the content of PA is larger than in mitochondria of the TNF-insensitive cells (C6 line), with this difference being mainly provided by PA incorporated in phosphatidylethanolamine and especially, cardiolipin. The PA/Ca2+ -dependent mechanism of permeability transition in mitochondria might be related to some pathologies, e.g. myocardial ischemia. The heaviness of myocardial infarction of ischemic patients has been demonstrated to correlate directly with the content of PA in the human blood serum.

PubMed Disclaimer

References

    1. Am J Physiol Heart Circ Physiol. 2000 Nov;279(5):H2124-32 - PubMed
    1. Am J Pathol. 1995 Jan;146(1):3-15 - PubMed
    1. J Biol Chem. 1997 Feb 7;272(6):3216-22 - PubMed
    1. Biochim Biophys Acta. 1990 Oct 1;1046(3):277-87 - PubMed
    1. Arch Biochem Biophys. 2001 Feb 1;386(1):37-51 - PubMed

Publication types

LinkOut - more resources