Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 7;126(26):8141-7.
doi: 10.1021/ja039935g.

De novo design of a D2-symmetrical protein that reproduces the diheme four-helix bundle in cytochrome bc1

Affiliations

De novo design of a D2-symmetrical protein that reproduces the diheme four-helix bundle in cytochrome bc1

Giovanna Ghirlanda et al. J Am Chem Soc. .

Abstract

An idealized, water-soluble D(2)-symmetric diheme protein is constructed based on a mathematical parametrization of the backbone coordinates of the transmembrane diheme four-helix bundle in cytochrome bc(1). Each heme is coordinated by two His residues from diagonally apposed helices. In the model, the imidazole rings of the His ligands are held in a somewhat unusual perpendicular orientation as found in cytochrome bc(1), which is maintained by a second-shell hydrogen bond to a Thr side chain on a neighboring helix. The resulting peptide is unfolded in the apo state but assembles cooperatively upon binding to heme into a well-folded tetramer. Each tetramer binds two hemes with high affinity at low micromolar concentrations. The equilibrium reduction midpoint potential varies between -76 mV and -124 mV vs SHE in the reducing and oxidizing direction, respectively. The EPR spectrum of the ferric complex indicates the presence of a low-spin species, with a g(max) value of 3.35 comparable to those obtained for hemes b of cytochrome bc(1) (3.79 and 3.44). This provides strong support for the designed perpendicular orientation of the imidazole ligands. Moreover, NMR spectra show that the protein exists in solution in a unique conformation and is amenable to structural studies. This protein may provide a useful scaffold for determining how second-shell ligands affect the redox potential of the heme cofactor.

PubMed Disclaimer

Publication types

LinkOut - more resources