Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul;50(7):1156-64.
doi: 10.1373/clinchem.2004.032136.

Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons

Affiliations

Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons

Michael Liew et al. Clin Chem. 2004 Jul.

Abstract

Background: High-resolution melting of PCR amplicons with the DNA dye LCGreen I was recently introduced as a homogeneous, closed-tube method of genotyping that does not require probes or real-time PCR. We adapted this system to genotype single-nucleotide polymorphisms (SNPs) after rapid-cycle PCR (12 min) of small amplicons (</=50 bp).

Methods: Engineered plasmids were used to study all possible SNP base changes. In addition, clinical protocols for factor V (Leiden) 1691G>A, prothrombin 20210G>A, methylenetetrahydrofolate reductase (MTHFR) 1298A>C, hemochromatosis (HFE) 187C>G, and beta-globin (hemoglobin S) 17A>T were developed. LCGreen I was included in the reaction mixture before PCR, and high-resolution melting was obtained within 2 min after amplification.

Results: In all cases, heterozygotes were easily identified because heteroduplexes altered the shape of the melting curves. Approximately 84% of human SNPs involve a base exchange between A::T and G::C base pairs, and the homozygotes are easily genotyped by melting temperatures (T(m)s) that differ by 0.8-1.4 degrees C. However, in approximately 16% of SNPs, the bases only switch strands and preserve the base pair, producing very small T(m) differences between homozygotes (<0.4 degrees C). Although most of these cases can be genotyped by T(m), one-fourth (4% of total SNPs) show nearest-neighbor symmetry, and, as predicted, the homozygotes cannot be resolved from each other. In these cases, adding 15% of a known homozygous genotype to unknown samples allows melting curve separation of all three genotypes. This approach was used for the HFE 187C>G protocol, but, as predicted from the sequence changes, was not needed for the other four clinical protocols.

Conclusions: SNP genotyping by high-resolution melting analysis is simple, rapid, and inexpensive, requiring only PCR, a DNA dye, and melting instrumentation. The method is closed-tube, performed without probes or real-time PCR, and can be completed in less than 2 min after completion of PCR.

PubMed Disclaimer

Publication types

LinkOut - more resources