Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug;131(15):3637-47.
doi: 10.1242/dev.01234. Epub 2004 Jun 30.

Function and regulation of FoxF1 during Xenopus gut development

Affiliations

Function and regulation of FoxF1 during Xenopus gut development

Hsiu-Ting Tseng et al. Development. 2004 Aug.

Abstract

Development of the visceral mesoderm is a critical process in the organogenesis of the gut. Elucidation of function and regulation of genes involved in the development of visceral mesoderm is therefore essential for an understanding of gut organogenesis. One of the genes specifically expressed in the lateral plate mesoderm, and later in its derivative, the visceral mesoderm, is the Fox gene FoxF1. Its function is critical for Xenopus gut development, and embryos injected with FoxF1 morpholino display abnormal gut development. In the absence of FoxF1 function, the lateral plate mesoderm, and later the visceral mesoderm, does not proliferate and differentiate properly. Region- and stage-specific markers of visceral mesoderm differentiation, such as Xbap and alpha-smooth muscle actin, are not activated. The gut does not elongate and coil. These experiments provide support for the function of FoxF1 in the development of visceral mesoderm and the organogenesis of the gut. At the molecular level, FoxF1 is a downstream target of BMP4 signaling. BMP4 can activate FoxF1 transcription in animal caps and overexpression of FoxF1 can rescue twinning phenotypes, which results from the elimination of BMP4 signaling. The cis-regulatory elements of FoxF1 are located within a 2 kb DNA fragment upstream of the coding region. These sequences can drive correct temporal-spatial expression of a GFP reporter gene in transgenic Xenopus tadpoles. These sequences represent a unique tool, which can be used to specifically alter gene expression in the lateral plate mesoderm.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources