Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures
- PMID: 15229596
- DOI: 10.1038/nature02674
Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures
Erratum in
- Nature. 2004 Aug 5;430(7000):704
Abstract
Substantial effort has been placed on developing semiconducting carbon nanotubes and nanowires as building blocks for electronic devices--such as field-effect transistors--that could replace conventional silicon transistors in hybrid electronics or lead to stand-alone nanosystems. Attaching electric contacts to individual devices is a first step towards integration, and this step has been addressed using lithographically defined metal electrodes. Yet, these metal contacts define a size scale that is much larger than the nanometre-scale building blocks, thus limiting many potential advantages. Here we report an integrated contact and interconnection solution that overcomes this size constraint through selective transformation of silicon nanowires into metallic nickel silicide (NiSi) nanowires. Electrical measurements show that the single crystal nickel silicide nanowires have ideal resistivities of about 10 microOmega cm and remarkably high failure-current densities, >10(8) A cm(-2). In addition, we demonstrate the fabrication of nickel silicide/silicon (NiSi/Si) nanowire heterostructures with atomically sharp metal-semiconductor interfaces. We produce field-effect transistors based on those heterostructures in which the source-drain contacts are defined by the metallic NiSi nanowire regions. Our approach is fully compatible with conventional planar silicon electronics and extendable to the 10-nm scale using a crossed-nanowire architecture.
Similar articles
-
Ge/Si nanowire heterostructures as high-performance field-effect transistors.Nature. 2006 May 25;441(7092):489-93. doi: 10.1038/nature04796. Nature. 2006. PMID: 16724062
-
Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices.Nature. 2001 Jan 4;409(6816):66-9. doi: 10.1038/35051047. Nature. 2001. PMID: 11343112
-
Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor.J Phys Chem B. 2006 Sep 21;110(37):18142-6. doi: 10.1021/jp064646a. J Phys Chem B. 2006. PMID: 16970428
-
Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics.Chem Soc Rev. 2012 Jun 21;41(12):4560-80. doi: 10.1039/c2cs15335a. Epub 2012 May 9. Chem Soc Rev. 2012. PMID: 22573265 Review.
-
Molecular memory based on nanowire-molecular wire heterostructures.J Nanosci Nanotechnol. 2007 Jan;7(1):138-50. J Nanosci Nanotechnol. 2007. PMID: 17455480 Review.
Cited by
-
Si and Ge based metallic core/shell nanowires for nano-electronic device applications.Sci Rep. 2018 Nov 15;8(1):16885. doi: 10.1038/s41598-018-35225-6. Sci Rep. 2018. PMID: 30442936 Free PMC article.
-
Simultaneous fabrication of line and dot dual nanopatterns using miktoarm block copolymer with photocleavable linker.Nat Commun. 2017 Nov 24;8(1):1765. doi: 10.1038/s41467-017-02019-9. Nat Commun. 2017. PMID: 29176706 Free PMC article.
-
Abrupt Schottky Junctions in Al/Ge Nanowire Heterostructures.Nano Lett. 2015 Jul 8;15(7):4783-7. doi: 10.1021/acs.nanolett.5b01748. Epub 2015 Jun 12. Nano Lett. 2015. PMID: 26052733 Free PMC article.
-
Composition Dependent Electrical Transport in Si1-x Gex Nanosheets with Monolithic Single-Elementary Al Contacts.Small. 2022 Nov;18(44):e2204178. doi: 10.1002/smll.202204178. Epub 2022 Sep 22. Small. 2022. PMID: 36135726 Free PMC article.
-
Bridged oxide nanowire device fabrication using single step metal catalyst free thermal evaporation.RSC Adv. 2018 Mar 14;8(19):10294-10301. doi: 10.1039/c7ra11987a. eCollection 2018 Mar 13. RSC Adv. 2018. PMID: 35540462 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources