Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jun;23(6):367-79.
doi: 10.1089/104454904323145254.

Fibulin-5 antagonizes vascular endothelial growth factor (VEGF) signaling and angiogenic sprouting by endothelial cells

Affiliations
Comparative Study

Fibulin-5 antagonizes vascular endothelial growth factor (VEGF) signaling and angiogenic sprouting by endothelial cells

Allan R Albig et al. DNA Cell Biol. 2004 Jun.

Abstract

Fibulin-5 (FBLN-5) is a widely expressed, integrin-binding extracellular matrix protein that mediates endothelial cell adhesion and scaffolds cells to elastic fibers. It is also a gene target of TGF-beta in fibroblasts and endothelial cells that regulates cell proliferation and motility in a context-specific manner. Whereas FBLN-5 expression is low in adult vasculature, its expression is high in developing and injured vasculature, implicating FBLN-5 in regulating angiogenesis and endothelial cell function. We show here that TGF-beta stimulates FBLN-5 expression in endothelial cells, and that this response was inhibited by coadministration of the proangiogenic factor, VEGF. FBLN-5 expression was downregulated significantly during endothelial cell tubulogenesis, implying that FBLN-5 expression antagonizes angiogenesis. Accordingly, FBLN-5 overexpression in or recombinant FBLN-5 treatment of endothelial cells abrogated their ability to undergo angiogenic sprouting, doing so by inhibiting endothelial cell proliferation and invasion through Matrigel matrices. Moreover, FBLN-5 antagonized VEGF signaling in endothelial cells, as well as enhanced their expression of the antiangiogenic factor, thrombospondin-1. Finally, the ability of FBLN-5 to antagonize angiogenic processes was determined to be independent of its integrin-binding RGD motif. Collectively, our findings establish FBLN-5 as a novel antagonist of angiogenesis and endothelial cell activities, and offer new insights into why tumorigenesis downregulates FBLN-5 expression.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources