Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 20;325(1):137-48.
doi: 10.1016/j.virol.2004.04.025.

C and V proteins of Sendai virus target signaling pathways leading to IRF-3 activation for the negative regulation of interferon-beta production

Affiliations
Free article

C and V proteins of Sendai virus target signaling pathways leading to IRF-3 activation for the negative regulation of interferon-beta production

Takayuki Komatsu et al. Virology. .
Free article

Abstract

We here report a molecular basis for downregulation of interferon (IFN)-beta production by V and C proteins of Sendai virus (SeV). The infection of HeLa cells with SeV poorly induced IFN-beta even if the expression of C/C' was disrupted. In contrast, when the expression of C/C'/Y1/Y2 or V/W was disrupted, SeV infection strongly induced IFN-beta production and significantly activated the interferon regulatory factor (IRF)-3 pathway. The independent expression of C or V inhibited the double-stranded (ds) RNA- or Newcastle disease virus (NDV)-induced activation of IRF-3 and NF-kappa B, as well as the IFN-beta promoter. This inhibitory effect was also observed when Y1, Y2, or a C-terminal half fragment (aa 85-204) of C was independently expressed. Phosphorylation and homodimer formation of IRF-3 were suppressed not only in cells infected with SeV capable of expressing both C/C'/Y1/Y2 (or Y1/Y2) and V/W, but also in HeLa cells constitutively expressing Y1. These results suggest that C, Y1, Y2, and V block signaling pathways leading to IRF-3 activation to downregulate IFN-beta production.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources