Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;18(12):1413-4.
doi: 10.1096/fj.04-1601fje. Epub 2004 Jul 1.

Apoptosis signals in lymphoblasts induced by focused ultrasound

Affiliations

Apoptosis signals in lymphoblasts induced by focused ultrasound

Amir Abdollahi et al. FASEB J. 2004 Sep.

Abstract

We investigated the effects of focused ultrasound (FUS) on specific molecular signaling and cellular response in three closely related human Tk6 lymphoblast cell lines that differed only in their p53 status. The applied ultrasound parameters fell between the physical dose range, which is safely used in medical diagnostics (peak pressure<0.1 MPa) and that used for high-energy FUS thermal ablation therapy (peak pressure>10 MPa). Based on cDNA microarrays and protein analysis, we found that FUS at the intermediate peak pressure of 1.5 MPa induced a complex signaling cascade with upregulation of proapoptotic genes [e.g., p53, p21, Thy1 (CD 90)]. Simultaneously, FUS downregulated cellular survival components (e.g., bcl-2, SOD). The p53 status was important for the reaction of the cells to ultrasound. Apoptosis and G1 arrest were induced primarily in p53+ cells, while p53- cells showed less apoptosis but exhibited G2 arrest. Likewise, the proliferation of lymphoblasts was much more strongly inhibited in p53+ than in p53- cells. Microarray analysis further demonstrated an upregulation of genes involved in oxidative stress (e.g., ferritin), suggesting that indirect sonochemical effects via reactive oxygen species play a causative role in the interaction of ultrasound with lymphoblasts. An important characteristic of FUS in therapeutic ultrasound applications is its ability to be administered to the human body in a targeted manner while sparing intermediate tissues. Therefore, our data indicate that this noninvasive, mechanical wave transmission, which is free of ionizing radiation, has the potential to specifically induce localized cell signals and apoptosis.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources