In silico simulation of biological network dynamics
- PMID: 15235611
- DOI: 10.1038/nbt991
In silico simulation of biological network dynamics
Abstract
Realistic simulation of biological networks requires stochastic simulation approaches because of the small numbers of molecules per cell. The high computational cost of stochastic simulation on conventional microprocessor-based computers arises from the intrinsic disparity between the sequential steps executed by a microprocessor program and the highly parallel nature of information flow within biochemical networks. This disparity is reduced with the Field Programmable Gate Array (FPGA)-based approach presented here. The parallel architecture of FPGAs, which can simulate the basic reaction steps of biological networks, attains simulation rates at least an order of magnitude greater than currently available microprocessors.
Comment in
-
The need for speed in stochastic simulation.Nat Biotechnol. 2004 Aug;22(8):964-5. doi: 10.1038/nbt0804-964. Nat Biotechnol. 2004. PMID: 15286647 No abstract available.
Similar articles
-
The need for speed in stochastic simulation.Nat Biotechnol. 2004 Aug;22(8):964-5. doi: 10.1038/nbt0804-964. Nat Biotechnol. 2004. PMID: 15286647 No abstract available.
-
Simulating complex intracellular processes using object-oriented computational modelling.Prog Biophys Mol Biol. 2004 Nov;86(3):379-406. doi: 10.1016/j.pbiomolbio.2003.11.001. Prog Biophys Mol Biol. 2004. PMID: 15302205 Review.
-
Probabilistic representation of gene regulatory networks.Bioinformatics. 2004 Sep 22;20(14):2258-69. doi: 10.1093/bioinformatics/bth236. Epub 2004 Apr 8. Bioinformatics. 2004. PMID: 15073019
-
Stochastic P systems and the simulation of biochemical processes with dynamic compartments.Biosystems. 2008 Mar;91(3):458-72. doi: 10.1016/j.biosystems.2006.12.009. Epub 2007 Jul 17. Biosystems. 2008. PMID: 17728055 Review.
-
On the attenuation and amplification of molecular noise in genetic regulatory networks.BMC Bioinformatics. 2006 Feb 2;7:52. doi: 10.1186/1471-2105-7-52. BMC Bioinformatics. 2006. PMID: 16457708 Free PMC article.
Cited by
-
A Digitally Programmable Cytomorphic Chip for Simulation of Arbitrary Biochemical Reaction Networks.IEEE Trans Biomed Circuits Syst. 2018 Apr;12(2):360-378. doi: 10.1109/TBCAS.2017.2781253. IEEE Trans Biomed Circuits Syst. 2018. PMID: 29570063 Free PMC article.
-
Parallel solutions for voxel-based simulations of reaction-diffusion systems.Biomed Res Int. 2014;2014:980501. doi: 10.1155/2014/980501. Epub 2014 Jun 12. Biomed Res Int. 2014. PMID: 25045716 Free PMC article.
-
Reaction factoring and bipartite update graphs accelerate the Gillespie Algorithm for large-scale biochemical systems.PLoS One. 2010 Jan 6;5(1):e8125. doi: 10.1371/journal.pone.0008125. PLoS One. 2010. PMID: 20066048 Free PMC article.
-
Bootstrapping least-squares estimates in biochemical reaction networks.J Biol Dyn. 2015;9(1):125-46. doi: 10.1080/17513758.2015.1033022. J Biol Dyn. 2015. PMID: 25898769 Free PMC article.
-
Deterministic mathematical models of the cAMP pathway in Saccharomyces cerevisiae.BMC Syst Biol. 2009 Jul 16;3:70. doi: 10.1186/1752-0509-3-70. BMC Syst Biol. 2009. PMID: 19607691 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources