Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 30;23(14):2237-55.
doi: 10.1002/sim.1809.

Diagnostic test accuracy and prevalence inferences based on joint and sequential testing with finite population sampling

Affiliations

Diagnostic test accuracy and prevalence inferences based on joint and sequential testing with finite population sampling

Chun-Lung Su et al. Stat Med. .

Abstract

The two-test two-population model, originally formulated by Hui and Walter, for estimation of test accuracy and prevalence estimation assumes conditionally independent tests, constant accuracy across populations and binomial sampling. The binomial assumption is incorrect if all individuals in a population e.g. child-care centre, village in Africa, or a cattle herd are sampled or if the sample size is large relative to population size. In this paper, we develop statistical methods for evaluating diagnostic test accuracy and prevalence estimation based on finite sample data in the absence of a gold standard. Moreover, two tests are often applied simultaneously for the purpose of obtaining a 'joint' testing strategy that has either higher overall sensitivity or specificity than either of the two tests considered singly. Sequential versions of such strategies are often applied in order to reduce the cost of testing. We thus discuss joint (simultaneous and sequential) testing strategies and inference for them. Using the developed methods, we analyse two real and one simulated data sets, and we compare 'hypergeometric' and 'binomial-based' inferences. Our findings indicate that the posterior standard deviations for prevalence (but not sensitivity and specificity) based on finite population sampling tend to be smaller than their counterparts for infinite population sampling. Finally, we make recommendations about how small the sample size should be relative to the population size to warrant use of the binomial model for prevalence estimation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources