Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 13;43(27):8607-15.
doi: 10.1021/bi0492096.

Redox functions of carotenoids in photosynthesis

Affiliations

Redox functions of carotenoids in photosynthesis

Harry A Frank et al. Biochemistry. .

Abstract

Carotenoids are well-known as light-harvesting pigments. They also play important roles in protecting the photosynthetic apparatus from damaging reactions of chlorophyll triplet states and singlet oxygen in both plant and bacterial photosynthesis. Recently, it has been found that beta-carotene functions as a redox intermediate in the secondary pathways of electron transfer within photosystem II and that carotenoid cation radicals are transiently formed after photoexcitation of bacterial light-harvesting complexes. The redox role of beta-carotene in photosystem II is unique among photosynthetic reaction centers and stems from the very strongly oxidizing intermediates that form in the process of water oxidation. Because of the extended pi-electron-conjugated system of carotenoid molecules, the cation radical is delocalized. This enables beta-carotene to function as a "molecular wire", whereby the centrally located oxidizing species is shuttled to peripheral redox centers of photosystem II where it can be dissipated without damaging the system. The physiological significance of carotenoid cation radical formation in bacterial light-harvesting complexes is not yet clear, but may provide a novel mechanism for excitation energy dissipation as a means of photoprotection. In this paper, the redox reactions of carotenoids in photosystem II and bacterial light-harvesting complexes are presented and the possible roles of carotenoid cation radicals in photoprotection are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources