Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;18(12):1401-3.
doi: 10.1096/fj.03-1161fje. Epub 2004 Jul 1.

ORP150/HSP12A protects renal tubular epithelium from ischemia-induced cell death

Affiliations

ORP150/HSP12A protects renal tubular epithelium from ischemia-induced cell death

Yoshio Bando et al. FASEB J. 2004 Sep.

Abstract

The 150 kDa oxygen-regulated protein (ORP150) is an inducible endoplasmic reticulum (ER) chaperone with cytoprotective properties in settings of cell stress, such as ischemia/reperfusion (I/R). Renal tissue from patients with acute renal failure displayed strong induction of ORP150 in tubular epithelium. In a rodent model of renal I/R injury, ORP150 was expressed in both the ischemic and contralateral kidney, principally in the thick ascending loop of Henle (TAL) and distal tubules. Cultured renal epithelial cells exposed to hypoxic or hyperosmotic conditions displayed induction of ORP150. Renal tubular epithelial cells stably transfected with ORP150 sense or antisense cDNA displayed a strong correlation between ORP150 expression and vulnerability to hypoxic/osmotic stress; higher levels of ORP150 were protective, whereas lower levels increased susceptibility to cell death. Compared with nontransgenic controls, transgenic mice overexpressing ORP150 subjected to renal I/R displayed a blunted rise of serum creatinine and blood urea nitrogen, and enhanced survival of TAL, consistent with cytoprotection. In contrast, heterozygous ORP150+/- mice, with lower levels of ORP150, showed enhanced renal injury. These data are consistent with the possibility that ORP150 exerts cytoprotective effects in renal tubular epithelia subjected to I/R injury and suggest a key role for ER stress in the renal tubular response to acute renal failure.

PubMed Disclaimer

MeSH terms

LinkOut - more resources