Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 15;173(2):1284-91.
doi: 10.4049/jimmunol.173.2.1284.

The lectin-like domain of complement receptor 3 protects endothelial barrier function from activated neutrophils

Affiliations

The lectin-like domain of complement receptor 3 protects endothelial barrier function from activated neutrophils

Vassiliki L Tsikitis et al. J Immunol. .

Abstract

The adhesion of neutrophils to endothelial cells is a central event leading to diapedesis and involves the binding of the I-domain of beta(2) integrins (CD11/CD18) to endothelial ICAMs. In addition to the I-domain, the beta(2) integrin complement receptor 3 (CR3) (CD11b/CD18) contains a lectin-like domain (LLD) that can alter leukocyte functions such as chemotaxis and cytotoxicity. The present study demonstrates that, in contrast to the CR3 I-domain, Ab blockade of the CR3 LLD has no role in mediating neutrophil-induced loss of endothelial barrier function. However, activation of CR3 with the LLD agonist beta-glucan protects the barrier function of endothelial cells in the presence of activated neutrophils and reduces transendothelial migration without affecting adhesion of the neutrophils to the endothelium. The LLD site-specific mAb VIM12 obviates beta-glucan protection while activation of the LLD by VIM12 cross-linking mimics the beta-glucan response by both preserving endothelial barrier function and reducing neutrophil transendothelial migration. beta-glucan has no direct effect on endothelial cell function in the absence of activated neutrophils. These findings demonstrate that signaling through the CR3 LLD prevents neutrophil-induced loss of endothelial barrier function and reduces diapedesis. This suggests that the LLD may be a suitable target for oligosaccharide-based anti-inflammatory therapeutics.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources