Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct;298(1):303-12.
doi: 10.1016/0003-9861(92)90127-i.

Compression loading in vitro regulates proteoglycan synthesis by tendon fibrocartilage

Affiliations

Compression loading in vitro regulates proteoglycan synthesis by tendon fibrocartilage

T J Koob et al. Arch Biochem Biophys. 1992 Oct.

Abstract

The regulation of proteoglycan synthesis in a fibrocartilaginous tissue by mechanical loading was assessed in vitro. Discs of bovine tendon fibrocartilage were loaded daily with unconfined, cyclic, uniaxial compression (5 s/min, 20 min/day) and the synthesis of large and small proteoglycans was measured by incorporation of [35S]sulfate. All discs synthesized predominantly large proteoglycan when first placed in culture. After 2 weeks in culture nonloaded discs synthesized predominantly small proteoglycans whereas loaded discs continued to produce predominantly large proteoglycan. The turnover of 35S-labeled proteoglycan was not significantly altered by the compression regime. Increased synthesis of large proteoglycans was induced by a 4-day compression regime following 21 days of culture without compression. Inclusion of cytochalasin B during compression mimicked this induction. Autoradiography demonstrated that cell proliferation was minimal and confined to the disc edges whereas 35S-labeled proteoglycan synthesis occurred throughout the discs. These experiments demonstrate that mechanical compression can regulate synthesis of distinct proteoglycan types in fibrocartilage.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources