Comparison between chlorosomes containing bacteriochlorophyll-c and chlorosomes containing bacteriochlorophyll-d isolated from two substrains of green sulfur photosynthetic bacterium Chlorobium vibrioforme NCIB 8327
- PMID: 15246355
- DOI: 10.1016/j.jphotobiol.2004.05.012
Comparison between chlorosomes containing bacteriochlorophyll-c and chlorosomes containing bacteriochlorophyll-d isolated from two substrains of green sulfur photosynthetic bacterium Chlorobium vibrioforme NCIB 8327
Abstract
Chlorosomes containing bacteriochlorophyll(BChl)-c and those containing BChl-d were isolated from two substrains of Chlorobium vibrioforme f. sp. thiosulfatophilum NCIB 8327, respectively. The two types of chlorosomes were investigated from the following aspect, what kinds of effects the molecular structure of chlorosomal BChls had on structural and spectroscopic properties of in vivo self-aggregates in chlorosomes without alteration of the other components such as chlorosomal proteins and lipids; both chlorosomes were expected to have the same components except for light-harvesting BChls. In their visible absorption spectra, the differences of Soret and Q(y) peak positions between BChl-c containing and BChl-d containing chlorosomes were similar to the differences between monomeric BChl-c and d. An inverse S-shaped CD signal in the Q(y) region of BChl-d containing chlorosomes was 1.4 times larger than that of BChl-c containing chlorosomes, when the Q(y) absorbance of the two chlorosomes was almost the same. This implies that the excitonic interaction of BChl-d is larger than that of BChl-c in natural chlorosomes. Resonance Raman spectroscopy showed that BChl self-assemblies in both chlorosomes were essentially formed by the same local structural interaction among 3(1)-hydroxy group, 13-keto group, and central magnesium. BChl-d self-aggregates in chlorosomes were more tolerant of 1-hexanol than in vivo BChl-c aggregates, suggesting that the molecular structure of BChl-d provided more stable self-assemblies than BChl-c in natural chlorosomes.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
