Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 29;365(3):167-70.
doi: 10.1016/j.neulet.2004.04.074.

Switch of K+ buffering conditions in rabbit retinal Müller glial cells during postnatal development

Affiliations

Switch of K+ buffering conditions in rabbit retinal Müller glial cells during postnatal development

Stefan Schopf et al. Neurosci Lett. .

Abstract

Although spatial buffering of excess extracellular K+ by K+ channels is a main function of retinal glial (Müller) cells, there are severe limitations to long distance K+-spatial buffering that have been predicted for (immature) glial cells: (i) a lack of inwardly rectifying K+ (Kir) channels [Glia 21(1997) 46]; and (ii) high internal resistance of outgrowing (cable like) processes [W. Rall, Handbook of Physiology, Section 1, vol. 1, Part 1, American Physiological Society, Bethesda, 1977, pp. 39-97]. In order to determine if changes in developing Müller cells improve or worsen their capability of carrying K+ spatial buffering currents, we compared the whole-cell currents of acutely isolated Müller cells at 5, 11 and 28 postnatal days of rabbits. Both K+-spatial buffer limitations described above were found in early postnatal stage (5 days), however, the cells overcome these limitations shortly after 11 days. During the period of 11-28 days, rabbit Müller cells simultaneously increase stalk axial conductance and express Kir channels. Both processes take place during the critical stage of retinal maturation, and should dramatically improve "cable" K+-spatial buffering.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources