Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 20;101(29):10762-7.
doi: 10.1073/pnas.0403962101. Epub 2004 Jul 9.

MS analysis of single-nucleotide differences in circulating nucleic acids: Application to noninvasive prenatal diagnosis

Affiliations

MS analysis of single-nucleotide differences in circulating nucleic acids: Application to noninvasive prenatal diagnosis

Chunming Ding et al. Proc Natl Acad Sci U S A. .

Abstract

The analysis of circulating nucleic acids has revealed applications in the noninvasive diagnosis, monitoring, and prognostication of many clinical conditions. Circulating fetal-specific sequences have been detected and constitute a fraction of the total DNA in maternal plasma. The diagnostic reliability of circulating DNA analysis depends on the fractional concentration of the targeted sequence, the analytical sensitivity, and the specificity. The robust discrimination of single-nucleotide differences between circulating DNA species is technically challenging and demands the adoption of highly sensitive and specific analytical systems. We have developed a method based on single-allele base extension reaction and MS, which allows for the reliable detection of fetal-specific alleles, including point mutations and single-nucleotide polymorphisms, in maternal plasma. The approach was applied to exclude the fetal inheritance of the four most common Southeast Asian beta-thalassemia mutations in at-risk pregnancies between weeks 7 and 21 of gestation. Fetal genotypes were correctly predicted in all cases studied. Fetal haplotype analysis based on a single-nucleotide polymorphism linked to the beta-globin locus, HBB, in maternal plasma also was achieved. Consequently, noninvasive prenatal diagnosis in a mother and father carrying identical beta-thalassemia mutations was accomplished. These advances will help in catalyzing the clinical applications of fetal nucleic acids in maternal plasma. This analytical approach also will have implications for many other applications of circulating nucleic acids in areas such as oncology and transplantation.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.
Schematic illustration of the SABER and standard MassARRAY assays. Maternal plasma detection of the paternally inherited fetal-specific β-thalassemia mutation, IVS2 654 C → T, is presented as an illustrative example. Maternal plasma is first amplified by PCR. The PCR products are subjected to base extension by the standard and SABER protocols. The standard protocol involves the base extension of both the mutant fetal allele (T allele) and the background allele (C allele), whereas the SABER method only extends the fetal-specific mutant allele. The base extension reactions are terminated by dideoxynucleotides, indicated in boxes. The extension products of the standard protocol include a predominance of the nonmutant allele (open arrows) with a small fraction of the fetal-specific mutant allele (filled arrows). The low abundance of the fetal allele (filled peak) is overshadowed by the nonmutant allele (open peak) on the mass spectrum. Because SABER only involves the extension of the mutant allele, the latter's presence (filled peak) can be robustly identified from the mass spectrum. The striped peaks represent the unextended primer.
Fig. 2.
Fig. 2.
MS analyses of the paternally inherited β-thalassemia IVS2 654 mutation in maternal plasma. For all mass spectra, mass (x axis) represents the molecular weight of the marked peaks. The expected molecular weights of all relevant peaks were calculated before the analysis. Intensity (y axis) is in arbitrary units. P and PP, unextended primer and pausing product (i.e., premature termination of the base extension reaction or incorporation of an undigested dGTP from shrimp alkaline phosphatase treatment for the wild-type DNA template), respectively. A and B illustrate the mass spectra obtained by the standard MassARRAY protocol for a fetus negative and positive for the mutation, respectively. T, expected mass of the mutant allele; C, position of the alleles without the IVS2 654 mutation. C and D illustrate the mass spectra obtained by the SABER MassARRAY protocol for a fetus negative and positive for the mutation, respectively. IVS2 654, expected mass of the mutant allele.

Similar articles

Cited by

References

    1. Anker, P., Mulcahy, H. & Stroun, M. (2003) Int. J. Cancer 103, 149-152. - PubMed
    1. Lo, Y. M. D., Chiu, R. W. K. & Johnson, P. J., eds. (2001) Circulating Nucleic Acids in Plasma or Serum II, Annals of the New York Academy of Sciences, Vol. 945 (N.Y. Acad. Sci., New York). - PubMed
    1. Lo, Y. M. D., Corbetta, N., Chamberlain, P. F., Rai, V., Sargent, I. L., Redman, C. W. & Wainscoat, J. S. (1997) Lancet 350, 485-487. - PubMed
    1. Chiu, R. W. K. & Lo, Y. M. D. (2002) Exp. Rev. Mol. Diagn. 2, 32-40. - PubMed
    1. Lo, Y. M. D., Tein, M. S., Lau, T. K., Haines, C. J., Leung, T. N., Poon, P. M., Wainscoat, J. S., Johnson, P. J., Chang, A. M. & Hjelm, N. M. (1998) Am. J. Hum. Genet. 62, 768-775. - PMC - PubMed

Publication types