Cognitive control signals for neural prosthetics
- PMID: 15247483
- DOI: 10.1126/science.1097938
Cognitive control signals for neural prosthetics
Abstract
Recent development of neural prosthetics for assisting paralyzed patients has focused on decoding intended hand trajectories from motor cortical neurons and using this signal to control external devices. In this study, higher level signals related to the goals of movements were decoded from three monkeys and used to position cursors on a computer screen without the animals emitting any behavior. Their performance in this task improved over a period of weeks. Expected value signals related to fluid preference, the expected magnitude, or probability of reward were decoded simultaneously with the intended goal. For neural prosthetic applications, the goal signals can be used to operate computers, robots, and vehicles, whereas the expected value signals can be used to continuously monitor a paralyzed patient's preferences and motivation.
Comment in
-
Neuroscience. Monkey see, monkey think about doing.Science. 2004 Jul 9;305(5681):162-3. doi: 10.1126/science.305.5681.162a. Science. 2004. PMID: 15247444 No abstract available.
Similar articles
-
Neuroscience. Monkey see, monkey think about doing.Science. 2004 Jul 9;305(5681):162-3. doi: 10.1126/science.305.5681.162a. Science. 2004. PMID: 15247444 No abstract available.
-
Temporal evolution and strength of neural activity in parietal cortex during eye and hand movements.Cereb Cortex. 2007 Jun;17(6):1350-63. doi: 10.1093/cercor/bhl046. Epub 2006 Aug 18. Cereb Cortex. 2007. PMID: 16920885
-
Cognitive neural prosthetics.Trends Cogn Sci. 2004 Nov;8(11):486-93. doi: 10.1016/j.tics.2004.09.009. Trends Cogn Sci. 2004. PMID: 15491902
-
Selecting the signals for a brain-machine interface.Curr Opin Neurobiol. 2004 Dec;14(6):720-6. doi: 10.1016/j.conb.2004.10.005. Curr Opin Neurobiol. 2004. PMID: 15582374 Review.
-
Intention, action planning, and decision making in parietal-frontal circuits.Neuron. 2009 Sep 10;63(5):568-83. doi: 10.1016/j.neuron.2009.08.028. Neuron. 2009. PMID: 19755101 Review.
Cited by
-
Sensory synergy as environmental input integration.Front Neurosci. 2015 Jan 13;8:436. doi: 10.3389/fnins.2014.00436. eCollection 2014. Front Neurosci. 2015. PMID: 25628523 Free PMC article.
-
Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering.PLoS Comput Biol. 2016 Apr 1;12(4):e1004730. doi: 10.1371/journal.pcbi.1004730. eCollection 2016 Apr. PLoS Comput Biol. 2016. PMID: 27035820 Free PMC article.
-
The utility of multichannel local field potentials for brain-machine interfaces.J Neural Eng. 2013 Aug;10(4):046005. doi: 10.1088/1741-2560/10/4/046005. Epub 2013 Jun 7. J Neural Eng. 2013. PMID: 23744624 Free PMC article.
-
Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface.Nat Commun. 2021 Jun 17;12(1):3689. doi: 10.1038/s41467-021-23884-5. Nat Commun. 2021. PMID: 34140486 Free PMC article.
-
Dynamic encoding of movement direction in motor cortical neurons.J Neurosci. 2009 Nov 4;29(44):13870-82. doi: 10.1523/JNEUROSCI.5441-08.2009. J Neurosci. 2009. PMID: 19889998 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources