Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Nov;24(6):762-74.
doi: 10.1002/med.20014.

Towards an understanding of organic anion transporters: structure-function relationships

Affiliations
Review

Towards an understanding of organic anion transporters: structure-function relationships

Guofeng You. Med Res Rev. 2004 Nov.

Abstract

Organic anion transporters (OAT) play essential roles in the body disposition of clinically important anionic drugs, including anti-viral drugs, anti-tumor drugs, antibiotics, anti-hypertensives, and anti-inflammatories. The activities of OATs are directly linked to drug toxicity and drug-drug interactions. So far, four members of the OAT family have been identified: OAT1, OAT2, OAT3, and OAT4. These transporters share several common structural features including 12 transmembrane domains, multiple glycosylation sites localized in the first extracellular loop between transmembrane domains 1 and 2, and multiple phosphorylation sites present in the intracellular loop between transmembrane domains 6 and 7, and in the carboxyl terminus. The impact of these structural features on the function of these transporters has just begun to be explored. In the present review, the author will summarize recent progress made from her laboratory as well as from others, on the molecular characterization of the structure-function relationships of OATs, including particular amino acid residues/regions of the transporter protein ("molecular domains") that potentially determine transport characteristics.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources