Poly(tetrafluoroethylene) separation capillaries for capillary electrophoresis. Properties and applications
- PMID: 15250423
- DOI: 10.1016/j.chroma.2004.03.074
Poly(tetrafluoroethylene) separation capillaries for capillary electrophoresis. Properties and applications
Abstract
Poly(tetrafluoroethylene) (PTFE) is a material widely known for its inertness and excellent electrical properties. It is also transparent in the UV region and has a reasonable thermal conductivity. These properties make PTFE a suitable material for the separation capillary in capillary electrophoresis. Differences in the chemistry of the capillary wall compared to fused silica (FS) can make PTFE an interesting alternative to FS for some special applications. In this work, properties of a commercial PTFE capillary of approx. 100 microm i.d. were investigated, including the dependence of electroosmotic flow (EOF) on pH for unmodified and dynamically modified PTFE, optical properties, and practical aspects of use. The main problems encountered for the particular PTFE capillary used in this study were that it was mechanically too soft for routine usage and the crystallinity of the PTFE caused light scattering, leading to high background absorbance values in the low UV region. The profile of the EOF versus pH for bare PTFE surprisingly showed significantly negative EOF values at pH < 4.2, with an EOF of -30 x 10(-9) m2 V(-1) s(-1) being observed at pH 2.5. This is likely to be caused by either impurities or additives of basic character in the PTFE, so that after their protonation at acidic pH they establish a positive charge on the capillary wall and create a negative EOF. A stable cationic semi-permanent coating of poly(diallyldimethylammonium chloride) (PDDAC) could be established on the PTFE capillary and led to very similar magnitudes of EOF to those observed with FS. A hexadecanesulfonate coating produced a cathodic EOF of extremely high magnitude ranging between +90 and +110 x 10(-9) m2 s(-1) V(-1), which are values high enough to allow counter-EOF separation of high mobility inorganic anions. In addition, pH-independent micellar electrokinetic capillary chromatography (MEKC) separations could be easily realised due to hydrophobic adsorption of sodium dodecylsulfate (used to form the micelles) on the wall of the PTFE capillary. The use of polymers that would be mechanically more robust and optically transparent in the low-UV region should make such CE capillaries an interesting alternative to fused silica.
Similar articles
-
Fluorinated ethylenepropylene copolymer as a potential capillary material in CE.Electrophoresis. 2007 Oct;28(19):3477-84. doi: 10.1002/elps.200700171. Electrophoresis. 2007. PMID: 17847133
-
Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry.Electrophoresis. 2001 Aug;22(12):2565-73. doi: 10.1002/1522-2683(200107)22:12<2565::AID-ELPS2565>3.0.CO;2-I. Electrophoresis. 2001. PMID: 11519960
-
Applications of a sulfonated-polymer wall-modified open-tubular fused-silica capillary in capillary zone electrophoretic separations.J Chromatogr A. 2000 Jul 7;884(1-2):297-309. doi: 10.1016/s0021-9673(00)00060-1. J Chromatogr A. 2000. PMID: 10917448
-
Recent innovation in capillary electrokinetic chromatography with replaceable charged pseudostationary phases or additives.Electrophoresis. 2000 Sep;21(15):3160-73. doi: 10.1002/1522-2683(20000901)21:15<3160::AID-ELPS3160>3.0.CO;2-V. Electrophoresis. 2000. PMID: 11001214 Review.
-
[Advances of capillary electrophoresis and capillary electrochromatography using ionic coating column].Se Pu. 2000 Nov;18(6):503-7. Se Pu. 2000. PMID: 12541736 Review. Chinese.
Cited by
-
Optoelectronic capillary sensors in microfluidic and point-of-care instrumentation.Sensors (Basel). 2010;10(4):3771-97. doi: 10.3390/s100403771. Epub 2010 Apr 14. Sensors (Basel). 2010. PMID: 22319325 Free PMC article. Review.
-
Detection of SARS-COV-2 by functionally imprinted micelles.MRS Commun. 2022;12(6):1160-1167. doi: 10.1557/s43579-022-00242-0. Epub 2022 Oct 25. MRS Commun. 2022. PMID: 36311275 Free PMC article.
-
Investigation of induced electroosmotic flow in small-scale capillary electrophoresis devices: Strategies for control and reversal.Electrophoresis. 2024 Oct;45(19-20):1764-1774. doi: 10.1002/elps.202400107. Epub 2024 Jul 25. Electrophoresis. 2024. PMID: 39054801
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources