Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jun;385(6):487-92.
doi: 10.1515/BC.2004.057.

Accumulation of mini-plasmin in the cerebral capillaries causes vascular invasion of the murine brain by a pneumotropic influenza A virus: implications for influenza-associated encephalopathy

Affiliations
Review

Accumulation of mini-plasmin in the cerebral capillaries causes vascular invasion of the murine brain by a pneumotropic influenza A virus: implications for influenza-associated encephalopathy

Dengfu Yao et al. Biol Chem. 2004 Jun.

Abstract

The infectivity and pathogenicity of influenza virus are primarily determined by host cellular trypsin-type processing proteases which cleave the viral membrane fusion glycoprotein hemagglutinin (HA). Therefore the distribution of the processing protease is a major determinant of the infectious organ tropism. The common epidemic human influenza A virus is pneumotropic and the HA processing proteases tryptase Clara, mini-plasmin, tryptase TC30 and ectopic anionic trypsin have all been isolated from mammalian airways. However, the pneumotropic influenza virus occasionally causes severe brain edema, particularly in children presenting with Reye's syndrome treated with aspirin, or in children with influenza-associated encephalopathy without antipyretic treatment. We have observed that, after influenza virus infection, the accumulation of mini-plasmin in the cerebral capillaries in mice with a congenital or acquired abnormality of mitochondrial beta-oxidation mimicking the pathological findings of Reye's syndrome, causes an invasion and multiplication of the pneumotropic influenza virus at these same locations. From these findings, we hypothesize that the accumulated mini-plasmin modifies the brain capillaries from a non-permissive to a permissive state, thereby allowing multiplication of pneumotropic influenza virus. In addition, mini-plasmin proteolytically destroys the blood-brain barrier. These pathologic findings, consistent with encephalopathy in mice with a systemic impairment of beta-oxidation, may have implications for human influenza encephalopathy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources