Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004;15(6):701-26.
doi: 10.1163/156856204774196117.

Angiogenesis with biomaterial-based drug- and cell-delivery systems

Affiliations
Review

Angiogenesis with biomaterial-based drug- and cell-delivery systems

Zarana S Patel et al. J Biomater Sci Polym Ed. 2004.

Abstract

Angiogenesis, the formation of new blood vessels from existing ones, is an important event in several biological processes, including wound healing. It plays a key role in determining the final functionality and integration of any implanted medical device. In addition, angiogenesis is a required event for organ development and has been accepted as a rate-limiting step in engineering tissue replacements. Besides these regenerative processes, uncontrolled angiogenesis is also involved in a number of pathologies, including tumor growth and metastases. Like angiogenesis, biomaterials also play a role in wound healing after medical device implantation and in tissue engineering. Interactions between the device biomaterials and host tissue will factor into the final device integration. Additionally, tissue-engineering strategies utilize biomaterials to a great extent because the paradigm of tissue engineering involves the use of cells, growth factors and scaffolding matrices in order to regenerate or replace tissue. Since almost all tissues are three-dimensional, the biomaterial scaffold plays an integral role in the paradigm. This review will emphasize the influence of biomaterials on angiogenesis as it applies to medical device implantation, tissue engineering and therapies for pathological angiogenesis.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources