Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004:6:453-95.
doi: 10.1146/annurev.bioeng.5.040202.121601.

Advances in quantitative electroencephalogram analysis methods

Affiliations
Review

Advances in quantitative electroencephalogram analysis methods

Nitish V Thakor et al. Annu Rev Biomed Eng. 2004.

Abstract

Quantitative electroencephalogram (qEEG) plays a significant role in EEG-based clinical diagnosis and studies of brain function. In past decades, various qEEG methods have been extensively studied. This article provides a detailed review of the advances in this field. qEEG methods are generally classified into linear and nonlinear approaches. The traditional qEEG approach is based on spectrum analysis, which hypothesizes that the EEG is a stationary process. EEG signals are nonstationary and nonlinear, especially in some pathological conditions. Various time-frequency representations and time-dependent measures have been proposed to address those transient and irregular events in EEG. With regard to the nonlinearity of EEG, higher order statistics and chaotic measures have been put forward. In characterizing the interactions across the cerebral cortex, an information theory-based measure such as mutual information is applied. To improve the spatial resolution, qEEG analysis has also been combined with medical imaging technology (e.g., CT, MR, and PET). With these advances, qEEG plays a very important role in basic research and clinical studies of brain injury, neurological disorders, epilepsy, sleep studies and consciousness, and brain function.

PubMed Disclaimer

LinkOut - more resources