Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004:6:497-525.
doi: 10.1146/annurev.bioeng.6.040803.140223.

Robotics, motor learning, and neurologic recovery

Affiliations
Review

Robotics, motor learning, and neurologic recovery

David J Reinkensmeyer et al. Annu Rev Biomed Eng. 2004.

Abstract

Robotic devices are helping shed light on human motor control in health and injury. By using robots to apply novel force fields to the arm, investigators are gaining insight into how the nervous system models its external dynamic environment. The nervous system builds internal models gradually by experience and uses them in combination with impedance and feedback control strategies. Internal models are robust to environmental and neural noise, generalized across space, implemented in multiple brain regions, and developed in childhood. Robots are also being used to assist in repetitive movement practice following neurologic injury, providing insight into movement recovery. Robots can haptically assess sensorimotor performance, administer training, quantify amount of training, and improve motor recovery. In addition to providing insight into motor control, robotic paradigms may eventually enhance motor learning and rehabilitation beyond the levels possible with conventional training techniques.

PubMed Disclaimer