Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Aug;90(3):734-42.
doi: 10.1111/j.1471-4159.2004.02538.x.

Systemic serotonin sulfate in opisthobranch mollusks

Affiliations
Comparative Study

Systemic serotonin sulfate in opisthobranch mollusks

Jeffrey N Stuart et al. J Neurochem. 2004 Aug.

Abstract

Serotonin (5-hydroxytryptamine, 5-HT) is a ubiquitous modulatory neurotransmitter with roles as a neurohormone and neurotransmitter. However, few studies have been performed characterizing this molecule and its related metabolites in circulating fluids. Here, we demonstrate native 5-HT sulfate, but much lower levels of 5-HT, in hemolymph of the marine mollusk Pleurobranchaea californica. The metabolite 5-HT sulfate forms from 5-HT uptake and metabolism in central ganglia of Aplysia californica and in the visceral nerve and eye of Pleurobranchaea, but not in hemolymph itself. In addition, 5-hydroxyindole acetic acid (5-HIAA), while not detected in hemolymph, forms in higher quantities than does 5-HT sulfate in the eye and visceral nerve, and gamma-glu-5-HT is also observed in this area but never in hemolymph. As systemic 5-HT sulfate appears not to originate from the optic region or from systemic 5-HT, 5-HT sulfate likely derives from the nervous system. Circulating 5-HT sulfate is at least 10-fold higher during the light portion of a 12 : 12-h light/dark cycle than during the dark portion (p < 0.0007), but there is no obvious trend for free systemic tryptophan (Trp) (p > 0.3) in Pleurobranchaea. 5-HT in mollusks is associated with general arousal state; thus, diurnal systemic changes in a 5-HT catabolite may reflect a regulatory role for indole catabolism in behavioral rhythms.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources