Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 15;64(14):4826-32.
doi: 10.1158/0008-5472.CAN-04-0871.

Identification of decatenation G2 checkpoint impairment independently of DNA damage G2 checkpoint in human lung cancer cell lines

Affiliations

Identification of decatenation G2 checkpoint impairment independently of DNA damage G2 checkpoint in human lung cancer cell lines

Taku Nakagawa et al. Cancer Res. .

Abstract

It has been suggested that attenuation of the decatenation G(2) checkpoint function, which ensures sufficient chromatid decatenation by topoisomerase II before entering into mitosis, may contribute to the acquisition of genetic instability in cancer cells. To date, however, very little information is available on this type of checkpoint defect in human cancers. In this study, we report for the first time that a proportion of human lung cancer cell lines did not properly arrest before entering mitosis in the presence of a catalytic, circular cramp-forming topoisomerase II inhibitor ICRF-193, whereas the decatenation G(2) checkpoint impairment was present independently of the impaired DNA damage G(2) checkpoint. In addition, the presence of decatenation G(2) checkpoint dysfunction was found to be associated with diminished activation of ataxia-telangiectasia mutated in response to ICRF-193, suggesting the potential involvement of an upstream pathway sensing incompletely catenated chromatids. Interestingly, hypersensitivity to ICRF-193 was observed in cell lines with decatenation G(2) checkpoint impairment and negligible activation of ataxia-telangiectasia mutated. These findings suggest the possible involvement of decatenation G(2) checkpoint impairment in the development of human lung cancers, as well as the potential clinical implication of selective killing of lung cancer cells with such defects by this type of topoisomerase II inhibitor.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms