Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul;150(Pt 7):2443-2450.
doi: 10.1099/mic.0.27033-0.

The putative permease PhlE of Pseudomonas fluorescens F113 has a role in 2,4-diacetylphloroglucinol resistance and in general stress tolerance

Affiliations
Free article

The putative permease PhlE of Pseudomonas fluorescens F113 has a role in 2,4-diacetylphloroglucinol resistance and in general stress tolerance

Abdelhamid Abbas et al. Microbiology (Reading). 2004 Jul.
Free article

Abstract

2,4-Diacetylphloroglucinol (PHL) is the primary determinant of the biological control activity of Pseudomonas fluorescens F113. The operon phlACBD encodes enzymes responsible for PHL biosynthesis from intermediate metabolites. The phlE gene, which is located downstream of the phlACBD operon, encodes a putative permease suggested to be a member of the major facilitator superfamily with 12 transmembrane segments. PhlE has been suggested to function in PHL export. Here the sequencing of the phlE gene from P. fluorescens F113 and the construction of a phlE null mutant, F113-D3, is reported. It is shown that F113-D3 produced less PHL than F113. The ratio of cell-associated to free PHL was not significantly different between the strains, suggesting the existence of alternative transporters for PHL. The phlE mutant was, however, significantly more sensitive to high concentrations of added PHL, implicating PhlE in PHL resistance. Furthermore, the phlE mutant was more susceptible to osmotic, oxidative and heat-shock stresses. Osmotic stress induced rapid degradation of free PHL by the bacteria. Based on these results, we propose that the role of phlE in general stress tolerance is to export toxic intermediates of PHL degradation from the cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources