Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul;150(Pt 7):2451-2463.
doi: 10.1099/mic.0.27159-0.

A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis

Affiliations
Free article

A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis

Basem Soboh et al. Microbiology (Reading). 2004 Jul.
Free article

Abstract

Thermoanaerobacter tengcongensis is a thermophilic Gram-positive bacterium able to dispose of the reducing equivalents generated during the fermentation of glucose to acetate and CO(2) by reducing H(+) to H(2). A unique combination of hydrogenases, a ferredoxin-dependent [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase, were found to be responsible for H(2) formation in this organism. Both enzymes were purified and characterized. The tightly membrane-bound [NiFe] hydrogenase belongs to a small group of complex-I-related [NiFe] hydrogenases and has highest sequence similarity to energy-converting [NiFe] hydrogenase (Ech) from Methanosarcina barkeri. A ferredoxin isolated from Ta. tengcongensis was identified as the physiological substrate of this enzyme. The heterotetrameric Fe-only hydrogenase was isolated from the soluble fraction. It contained FMN and multiple iron-sulfur clusters, and exhibited a typical H-cluster EPR signal after autooxidation. Sequence analysis predicted and kinetic studies confirmed that the enzyme is an NAD(H)-dependent Fe-only hydrogenase. When H(2) was allowed to accumulate in the culture, the fermentation was partially shifted to ethanol production. In cells grown at high hydrogen partial pressure [p(H(2))] the NADH-dependent hydrogenase activity was fourfold lower than in cells grown at low p(H(2)), whereas aldehyde dehydrogenase and alcohol dehydrogenase activities were higher in cells grown at elevated p(H(2)). These results indicate a regulation in response to the p(H(2)).

PubMed Disclaimer

Publication types

LinkOut - more resources