Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004;30(3-4):339-43.

Blood fluidity is related to the ability to oxidize lipids at exercise

Affiliations
  • PMID: 15258364
Review

Blood fluidity is related to the ability to oxidize lipids at exercise

Jean-Frédéric Brun et al. Clin Hemorheol Microcirc. 2004.

Abstract

We previously reported in rugbywomen correlations between RBC deformability and the ability to oxidize at exercise more lipids. This surprising finding might of course be spurious, or reflect the importance of the balance of substrates at exercise on baseline parameters that regulate blood rheology. Actually, the capacity of skeletal muscle to utilize either lipid or carbohydrate as fuels strongly influences whole body metabolism both at rest and during exercise. While the healthy skeletal muscle has substantial metabolic flexibility and is able to switch from predominantly lipid o oxidation during fasting or endurance exercise to increased glucose oxidation in conditions of insulin stimulation, obese individuals and those with type 2 diabetes manifest higher lipid oxidation during insulin-stimulated conditions despite lower rates of lipid oxidation during fasting or prolonged exercise. A low ability to oxidize and to periodically deplete triglyceride in muscle is associated with raised blood lipids. In addition, high carbohydrate oxidation rates in the mitochondrion are likely to promote more free radical generation. An increase in either blood lipids or free radicals is likely to induce profound hemorheological effects. We present here hemorheological studies in various populations with the use of exercise calorimetry in order to assess this switch of substrates. These studies further evidence negative correlations between the ability to oxidize lipids at exercise and parameters of blood viscosity. Correlations found between RBC deformability and the ability to oxidize at exercise more lipids may be due to effects of endurance training on lipid oxidation which may in turn modify both lipid metabolism and free radical generation, thus influencing RBC rheology.

PubMed Disclaimer