Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun;9(3):343-52.

Simple linear model provides highly accurate genotypic predictions of HIV-1 drug resistance

Affiliations
  • PMID: 15259897

Simple linear model provides highly accurate genotypic predictions of HIV-1 drug resistance

Kai Wang et al. Antivir Ther. 2004 Jun.

Abstract

Drug resistance is a major obstacle to the successful treatment of HIV-1 infection. Genotypic assays are used widely to provide indirect evidence of drug resistance, but the performance of these assays has been mixed. We used standard stepwise linear regression to construct drug resistance models for seven protease inhibitors and 10 reverse transcriptase inhibitors using data obtained from the Stanford HIV drug resistance database. We evaluated these models by hold-one-out experiments and by tests on an independent dataset. Our linear model outperformed other publicly available genotypic interpretation algorithms, including decision tree, support vector machine and four rules-based algorithms (HIVdb, VGI, ANRS and Rega) under both tests. Interestingly, our model did well despite the absence of any terms for interactions between different residues in protease or reverse transcriptase. The resulting linear models are easy to understand and can potentially assist in choosing combination therapy regimens.

PubMed Disclaimer

Publication types