Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Aug 13;1017(1-2):46-52.
doi: 10.1016/j.brainres.2004.05.012.

Localization of TREK-1, a two-pore-domain K+ channel in the peripheral vestibular system of mouse and rat

Affiliations
Comparative Study

Localization of TREK-1, a two-pore-domain K+ channel in the peripheral vestibular system of mouse and rat

Marie-Thérèse Nicolas et al. Brain Res. .

Abstract

The distribution of two-pore-domain (2P-domain) K(+) channels of the TREK subfamily was studied using immunocytochemistry in the peripheral vestibular system of mouse and rat. Using RT-PCR, the mRNA for TREK-1, but not for TREK-2 or TRAAK, were detected in mouse vestibular endorgans and ganglia. The TREK-1 channel protein was immunodetected in both nerve fibers and nerve cell bodies in the vestibular ganglion, both afferent fibers and nerve calyces innervating type I hair cells in the utricle and cristae. The post-synaptic localization in afferent calyces may suggest a neuroprotective role in glutamatergic excitotoxicity during ischemic conditions. In non-neuronal cells, TREK-1 was immunodetected in the apical membrane of dark cells and transitional cells, both of which are involved in endolymph K(+) secretion and recycling. TREK-1 may subserve some neuroprotective function in afferent nerve fibers as well as play a role in endolymph potassium homeostasis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources