Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul;28(3):235-44.
doi: 10.1016/j.compbiolchem.2004.05.002.

Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models

Affiliations

Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models

Yongxi Tan et al. Comput Biol Chem. 2004 Jul.

Abstract

High-throughput DNA microarray provides an effective approach to the monitoring of expression levels of thousands of genes in a sample simultaneously. One promising application of this technology is the molecular diagnostics of cancer, e.g. to distinguish normal tissue from tumor or to classify tumors into different types or subtypes. One problem arising from the use of microarray data is how to analyze the high-dimensional gene expression data, typically with thousands of variables (genes) and much fewer observations (samples). There is a need to develop reliable classification methods to make full use of microarray data and to evaluate accurately the predictive ability and reliability of such derived models. In this paper, discriminant partial least squares was used to classify the different types of human tumors using four microarray datasets and showed good prediction performance. Four different cross-validation procedures (leave-one-out versus leave-half-out; incomplete versus full) were used to evaluate the classification model. Our results indicate that discriminant partial least squares using leave-half-out cross-validation provides a more realistic estimate of the predictive ability of a classification model, which may be overestimated by some of the cross-validation procedures, and the information obtained from different cross-validation procedures can be used to evaluate the reliability of the classification model.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources