Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Aug 30;137(2):141-50.
doi: 10.1016/j.jneumeth.2004.02.019.

Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation

Affiliations
Comparative Study

Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation

Stuart F Cogan et al. J Neurosci Methods. .

Abstract

Microelectrodes using activated iridium oxide (AIROF) charge-injection coatings have been pulsed in cat cortex at levels from near-threshold for neural excitation to the reported in vitro electrochemical charge-injection limits of AIROF. The microelectrodes were subjected to continuous biphasic current pulsing, using an 0.4V (versus Ag|AgCl) anodic bias with equal cathodal and anodal pulse widths, for periods up to 7h at a frequency of either 50Hz or 100Hz. At charge densities of 3mC/cm(2), histology revealed iridium-containing deposits in tissue adjacent to the charge-injection sites and scanning electron microscopy of explanted electrodes revealed a thickened and poorly adherent AIROF coating. Microelectrodes pulsed at 2mC/cm(2) or less remained intact, with no histologic evidence of non-biologic deposits in the tissue. AIROF microelectrodes challenged in vitro under the same pulsing conditions responded similarly, with electrodes pulsed at 3mC/cm(2) showing evidence of AIROF delamination after only 100s of pulsing at 100Hz (10,000 pulses total), while electrodes pulsed at 2mC/cm(2) for 7h at 50Hz (1.3 x 10(6) pulses total) showed no evidence of damage. In vitro electrochemical potential transient measurements in buffered physiologic saline indicate that polarizing the AIROF beyond the potential window for electrolysis of water (-0.6 to 0.8V versus Ag|AgCl) results in the observed degradation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources