Learning kernels from biological networks by maximizing entropy
- PMID: 15262816
- DOI: 10.1093/bioinformatics/bth906
Learning kernels from biological networks by maximizing entropy
Abstract
Motivation: The diffusion kernel is a general method for computing pairwise distances among all nodes in a graph, based on the sum of weighted paths between each pair of nodes. This technique has been used successfully, in conjunction with kernel-based learning methods, to draw inferences from several types of biological networks.
Results: We show that computing the diffusion kernel is equivalent to maximizing the von Neumann entropy, subject to a global constraint on the sum of the Euclidean distances between nodes. This global constraint allows for high variance in the pairwise distances. Accordingly, we propose an alternative, locally constrained diffusion kernel, and we demonstrate that the resulting kernel allows for more accurate support vector machine prediction of protein functional classifications from metabolic and protein-protein interaction networks.
Availability: Supplementary results and data are available at noble.gs.washington.edu/proj/maxent
Similar articles
-
Supervised reconstruction of biological networks with local models.Bioinformatics. 2007 Jul 1;23(13):i57-65. doi: 10.1093/bioinformatics/btm204. Bioinformatics. 2007. PMID: 17646345
-
Improving protein protein interaction prediction based on phylogenetic information using a least-squares support vector machine.Ann N Y Acad Sci. 2007 Dec;1115:154-67. doi: 10.1196/annals.1407.005. Epub 2007 Oct 9. Ann N Y Acad Sci. 2007. PMID: 17925357
-
Supervised inference of gene-regulatory networks.BMC Bioinformatics. 2008 Jan 4;9:2. doi: 10.1186/1471-2105-9-2. BMC Bioinformatics. 2008. PMID: 18177495 Free PMC article.
-
Using product kernels to predict protein interactions.Adv Biochem Eng Biotechnol. 2008;110:215-45. doi: 10.1007/10_2007_084. Adv Biochem Eng Biotechnol. 2008. PMID: 17922100 Review.
-
Computational methods for predicting protein-protein interactions.Adv Biochem Eng Biotechnol. 2008;110:247-67. doi: 10.1007/10_2007_089. Adv Biochem Eng Biotechnol. 2008. PMID: 18202838 Review.
Cited by
-
Disease gene identification by random walk on multigraphs merging heterogeneous genomic and phenotype data.BMC Genomics. 2012;13 Suppl 7(Suppl 7):S27. doi: 10.1186/1471-2164-13-S7-S27. Epub 2012 Dec 13. BMC Genomics. 2012. PMID: 23282070 Free PMC article.
-
Predicting functional associations from metabolism using bi-partite network algorithms.BMC Syst Biol. 2010 Jul 14;4:95. doi: 10.1186/1752-0509-4-95. BMC Syst Biol. 2010. PMID: 20630077 Free PMC article.
-
Protein-network modeling of prostate cancer gene signatures reveals essential pathways in disease recurrence.J Am Med Inform Assoc. 2011 Jul-Aug;18(4):392-402. doi: 10.1136/amiajnl-2011-000178. J Am Med Inform Assoc. 2011. PMID: 21672909 Free PMC article.
-
Adaptive diffusion kernel learning from biological networks for protein function prediction.BMC Bioinformatics. 2008 Mar 25;9:162. doi: 10.1186/1471-2105-9-162. BMC Bioinformatics. 2008. PMID: 18366736 Free PMC article.
-
RIDDLE: reflective diffusion and local extension reveal functional associations for unannotated gene sets via proximity in a gene network.Genome Biol. 2012 Dec 26;13(12):R125. doi: 10.1186/gb-2012-13-12-r125. Genome Biol. 2012. PMID: 23268829 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources