Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug 15;77(4):532-9.
doi: 10.1002/jnr.20182.

Effects of apolipoprotein E on the human immunodeficiency virus protein Tat in neuronal cultures and synaptosomes

Affiliations

Effects of apolipoprotein E on the human immunodeficiency virus protein Tat in neuronal cultures and synaptosomes

Chava B Pocernich et al. J Neurosci Res. .

Abstract

Human immunodeficiency virus type 1 (HIV-1)-associated dementia is observed in 20-30% of patients with acquired immunodeficiency syndrome (AIDS). The epsilon4 allele of the apolipoprotein E (APOE) gene currently is thought to play a role as a risk factor for the development of HIV dementia. The HIV protein Tat is neurotoxic and binds to the same receptor as apoE, the low-density lipoprotein receptor-related protein (LRP). In this study, we investigated the role apoE plays in Tat toxicity. Synaptosomes from wild-type mice treated with Tat had increased reactive oxygen species (ROS), increased lipid and protein oxidation, and decreased mitochondrial membrane potential. Synaptosomes from APOE-knockout mice also had increased ROS, increased protein oxidation, and decreased mitochondrial membrane potential, but to a significantly lesser degree. Treatment of synaptosomes with heparinase and Tat increased Tat-induced oxidative stress, consistent with the notion of Tat requiring interaction with neuronal membranes to induce oxidative damage. Human lipidated apoE3 greatly protected neurons from Tat-induced toxicity, whereas human lipidated apoE4 showed no protection. We demonstrated that human apoE3 has antioxidant properties against Tat-induced toxicity. Taken together, the data suggest that murine apoE and human apoE4 act similarly and do not protect the cell from Tat-induced toxicity. This would allow excess Tat to remain outside the cell and interact with synaptosomal membranes, leading to oxidative stress and neurotoxicity, which could contribute to dementia associated with HIV. We show that the antioxidant properties of apoE3 greatly outweigh the competition for clearance in deterring Tat-induced oxidative stress.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources